21 research outputs found

    Mass transfer in eccentric binaries: the new Oil-on-Water SPH technique

    Full text link
    To measure the onset of mass transfer in eccentric binaries we have developed a two-phase SPH technique. Mass transfer is important in the evolution of close binaries, and a key issue is to determine the separation at which mass transfer begins. The circular case is well understood and can be treated through the use of the Roche formalism. To treat the eccentric case we use a newly-developed two phase system. The body of the donor star is made up from high-mass "water" particles, whilst the atmosphere is modelled with low-mass "oil" particles. Both sets of particles take part fully in SPH interactions. To test the technique we model circular mass-transfer binaries containing a 0.6 Msun donor star and a 1 Msun white dwarf; such binaries are thought to form cataclysmic variable (CV) systems. We find that we can reproduce a reasonable CV mass-transfer rate, and that our extended atmosphere gives a separation that is too large by aproximately 16%, although its pressure scale height is considerably exaggerated. We use the technique to measure the semi-major axis required for the onset of mass transfer in binaries with a mass ratio of q=0.6 and a range of eccentricities. Comparing to the value obtained by considering the instantaneous Roche lobe at pericentre we find that the radius of the star required for mass transfer to begin decreases systematically with increasing eccentricity.Comment: 9 pages, 8 figures, accepted by MNRA

    Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields

    Get PDF
    Models of galaxy and halo clustering commonly assume that the tracers can be treated as a continuous field locally biased with respect to the underlying mass distribution. In the peak model pioneered by BBKS, one considers instead density maxima of the initial, Gaussian mass density field as an approximation to the formation site of virialized objects. In this paper, the peak model is extended in two ways to improve its predictive accuracy. Firstly, we derive the two-point correlation function of initial density peaks up to second order and demonstrate that a peak-background split approach can be applied to obtain the k-independent and k-dependent peak bias factors at all orders. Secondly, we explore the gravitational evolution of the peak correlation function within the Zel'dovich approximation. We show that the local (Lagrangian) bias approach emerges as a special case of the peak model, in which all bias parameters are scale-independent and there is no statistical velocity bias. We apply our formulae to study how the Lagrangian peak biasing, the diffusion due to large scale flows and the mode-coupling due to nonlocal interactions affect the scale dependence of bias from small separations up to the baryon acoustic oscillation (BAO) scale. For 2-sigma density peaks collapsing at z=0.3, our model predicts a ~ 5% residual scale-dependent bias around the acoustic scale that arises mostly from first-order Lagrangian peak biasing (as opposed to second-order gravity mode-coupling). We also search for a scale dependence of bias in the large scale auto-correlation of massive halos extracted from a very large N-body simulation provided by the MICE collaboration. For halos with mass M>10^{14}Msun/h, our measurements demonstrate a scale-dependent bias across the BAO feature which is very well reproduced by a prediction based on the peak model.Comment: (v1): 23 pages text, 8 figures + appendix (v2): typos fixed, references added, accepted for publication in PR

    Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Full text link
    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. In the linear regime k < 0.1 h/Mpc, the redshift space power spectrum is P^s_{pk}(k,u) = exp(-f^2 s_{vel}^2 k^2 u^2) * [b_{pk}(k) + b_{vel}(k) f u^2]^2 * P_m(k), where u is the angle with respect to the line of sight, s_{vel} is the one-dimensional velocity dispersion, f is the growth rate, and b_{pk}(k) and b_{vel}(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of s_{vel} depends upon the functional form of b_{vel}. The peaks model is remarkable because it has unbiased velocities -- peak motions are driven by dark matter flows -- but, in order to achieve this, b_{vel} is k-dependent. We speculate that this is true in general: k-dependence of the spatial bias will lead to k-dependence of b_{vel} even if the biased tracers flow with the dark matter. Because of the k-dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of two if one allows for a k-dependent velocity bias of the peak type. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k < 0.1 h/Mpc, the peak bias is deterministic but k-dependent, so the configuration space bias is stochastic and scale dependent, both in real and redshift space. We provide expressions for this stochasticity and its evolution (abridged).Comment: 24 pages, 7 figures (v3): references added (v4): added figure+appendix. In press in PR

    A complete X-ray spectral coverage of the 2010 May-June outbursts of Circinus X-1

    Get PDF
    Circinus X-1 is a neutron-star-accreting X-ray binary in a wide (Porb_{\rm orb} = 16.6 d), eccentric orbit. After two years of relatively low X-ray luminosity, in May 2010 Circinus X-1 went into outburst, reaching 0.4 Crab flux. This outburst lasted for about two orbital cycles and was followed by another shorter and fainter outburst in June. We focus here on the broadband X-ray spectral evolution of the source as it spans about three order of magnitudes in flux. We attempt to relate luminosity, spectral shape, local absorption, and orbital phase. We use multiple Rossi-XTE/PCA (3.0--25 keV) and Swift/XRT (1.0--9.0 keV) observations and a 20 ks long Chandra/HETGS observation (1.0--9.0 keV), to comprehensively track the spectral evolution of the source during all the outbursting phases. These observations were taken every two/three days and cover about four orbital cycles. The PCA data mostly cover the major outburst, the XRT data monitor the declining phase of the major outburst and all the phases of the minor outburst, and Chandra data provide an essential snapshot of the end of this overall outbursting phase. The X-ray spectrum can be satisfactorily described by a thermal Comptonization model with variable neutral local absorption in all phases of the outburst. No other additive component is statistically required. The first outburst decays linearly, with an ankle in the light curve as the flux decreases below \sim\,5 ×\times 1010^{-10} erg cm2^{-2} s1^{-1}. At the same time, the source shows a clear spectral state transition from an optically thick to an optically thin state. While the characteristics of the first, bright, outburst can be interpreted within the disk-instability scenario, the following, minor, outburst shows peculiarities that cannot be easily reconciled in this framework.Comment: Accepted for publication in Astronomy and Astrophysic

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    Simultaneous assessment of acidogenesis-mitigation and specific bacterial growth-inhibition by dentifrices

    Get PDF
    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices

    Cosmology with galaxy cluster phase spaces

    No full text
    corecore